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Heteropolyacid encapsulated into mesoporous
silica framework for an efficient preparation of 1,1-diacetates

from aldehydes under a solvent-free condition
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Abstract—Acylals were prepared from aliphatic and aromatic aldehydes using heteropolyacid (SiPW-8) encapsulated into the
framework of mesoporous silica as catalysts in a solvent-free procedure. The catalyst was very effective and reusable for the pro-
duction of 1,1-diacetates from aldehydes under a mild reaction condition.
� 2006 Elsevier Ltd. All rights reserved.
The use of protecting groups is greatly significant in
organic synthesis,1 and acylal preparation is one of the
most useful methods to protect carbonyl groups due to
the stability of the 1,1-diacetates in neutral and basic
media.1c 1,1-Diacetates are usually prepared from car-
bonyl compounds with acetic anhydride in the presence
of Brǿnsted, Lewis acid catalysts (such as KHSO4,2

H2SO4, CH3SO3H, H3PO4,3 NH2SO3H,4 Nafion-7,5

ZnCl2,6 PCl3,7 FeCl3/SiO2,8 I2,9 WCl6,10 LiOTf,11

LiBF4,12 Sc(OTf)3,13 ZrCl4
14) under neutral conditions

(such as NBS).15 Several other catalysts have also been
employed for acylal preparation, for example, expansive
graphite,16 zeolites,1b,2 tungstosilicic acid, HZSM-5,
Fe3+ on montmorillonite, PVC–FeCl3 complex and zir-
conium sulfophenyl phosphonate.17 However, these
cases were a high cost, rigorous reaction condition,
and not environmentally benign because of the use
of mineral acids, requirement of organic solvents.
Recently, searching for a greener chemical process has
become one of the most important tasks of today’s
chemical researchers.18 There are lots of methods to
achieve this goal such as green solvents, catalysts, and
economic feedbacks.

Heteropolyacids are useful solid catalysts because of
their super acidic properties.19 As a part of a research
project to develop environmentally friendly organic
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reactions, heteropolyacid catalysts have recently applied
to different reactions. Heteropolyacid catalysts
(H6P2W18O62Æ24H2O) have been also recently applied
to protect aldehydes as acylals.20 Although the sub-
strates could be completely consumed, the separation
of products with catalysts is very difficult. Herein, we
report a simple, convenient and efficient process for
the preparation of 1,1-diacetates from aliphatic and
aromatic aldehydes using heteropolyacids encapsulated
into mesoporous silica frameworks (SiPW-8)21,22 as
solid catalysts under a solvent-free condition.

The results of the solvent-free preparation of acylal from
aliphatic and aromatic aldehydes in the presence of 0.1 g
SiPW-8 at room temperature are shown in Table 1. 1,1-
Diacetates were produced in a nearly 98% yield by the
reaction of benzaldehyde with acetic anhydride in less
than 10 min. Benzaldehyde with electron-donating
groups, that is, 4-methyl-benzaldehyde, were converted
into their corresponding acylal with high yields after a
short reaction time. Compared to that with electron-
donating groups, the one with electron-withdrawing
groups, that is, 3-nitro-benzaldehyde needed a longer
reaction time to form the corresponding acylal.
Aliphatic aldehydes were similarly converted into the
corresponding acylal with good to excellent yields. The
acid sensitive substrate (furfural) also led to the forma-
tion of acylal with a 98% yield without any by-products.
Some aliphatic and aromatic ketones (acetone, butanone,
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Table 1. Catalytic conversion of aldehydes to acylals using SiPW-8

Entry Substrate Products Yield (%)

1 Benzaldehyde A 95
2 4-Methyl-benzaldehyde B 98
3 4-Methoxy-benzaldehyde C 98
4 4-Chloro-benzaldehyde D 96
5 2-Nitro-benzaldehyde E 93
6 3-Nitro-benzaldehyde F 93
7 4-Nitro-benzaldehyde G 92
8 Butyl aldehyde H 89
9 Heptyl aldehyde I 94

10 Cinnamaldehyde J 92
11 Furfural K 98
12 Acetophenone L —
13 Bezophenone M —
14 Ethyl n-butyl ketone N —
15 Butanone O —
16 Acetone P —
17 Heptanone Q —

Reactions condition: reaction temperature 20 �C, reaction time 30 min,
catalyst amount 0.1 g, yields are expressed from crystallized products
(see text).

Table 2. Comparison of the effect of catalysts for gem-diacetate
synthesis from 4-methylbenzaldehyde

Entry Catalyst Yield Time Ref.

1a SiPW-8 96 6 min
2a H3PW12O40Æ12.5H2O 99 10 min
3a H6P2W18O62Æ24H2O 97 10 min
4a AlPW12O40 96 5 min
6 Sc(OTf)3 95 10 min 16
8 LiBF4 92 24 h 15
9 NBS 93 9 h 18
10 Zr(CH3PO3)1.2(O3PC6H4SO3H)0.8 75 12 min 20

a Reaction condition: catalyst 0.1 g, alcohol 5 mmol, acetic anhydride
15 mmol, room temperature.
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acetophenone, and ethyl n-butyl ketone) studied for the
reaction were not reactive under the described experi-
mental conditions.

The results of the gem-diacetate synthesized from
4-methylbenzaldehyde in the presence of H3PW12O40Æ
12.5H2O, AlPW12O40, H6P2W18O62Æ24H2O, Sc(OTf)3,
LiBF4, NBS and Zr (CH3PO3)1.2(O3PC6H4SO3H)0.8

are listed in Table 2. It showed that SiPW-8 catalyzed
the reactions more effectively than did NBS, metal tri-
Table 3. Competitive acylal formation of aldehydes using Ac2O in the prese

RCHO + R'CHO + Ac2O
SiPW-8, 0.1 
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R, R' = alkyl, aryl
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Reaction condition: Each substrate 2 mmol, acetic anhydride 2 mmol, cataly
flates and zirconium sulfophenyl phosphonate at the
same reaction conditions. Reaction with LiBF4 as the
catalyst required a higher temperature and longer reac-
tion time. The preparation of acylals with zirconium
sulfophenyl phosphonate and metal triflates as catalysts
was performed in solvents such as CH3CN and at room
temperature with longer reaction times and lower yields.
It is interesting that the catalytic activity of the silica-
included H3PW12O40 (SiPW-8) was higher than that of
H3PW12O40Æ12.5H2O, AlPW12O40 and H6P2W18O62Æ
24H2O for the preparation of acylals, which suggested
that H3PW12O40 formed a highly concentrated aqueous
solution in the matrix.

We studied the competitive reaction for the acylation of
aldehydes in the presence of ketones using SiPW-8 as the
catalyst at room temperature. In the presence of
nce of SiPW-8 at room temperature
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st amount 0.1 g, room temperature, time 5 min.
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ketones, the highly selective conversion of aldehydes was
observed. The acylation of 4-methylbenzaldehyde versus
4-nitro-benzaldehyde and 3-nitro-benzaldehyde also
showed a high selectivity in the presence of this
catalyst, which indicated the importance of electronic
effects upon these reactions (Table 3).

One of the main aims of using SiPW-8 as the catalyst
was to study the possibility of catalyst separation and
recycle. We found that the catalyst SiPW-8 could be
easily separated from the reaction system by a simple
procedure. Recycling experiments results of benzyl alde-
hydes to acylals are listed in Table 4. It showed that the
catalyst was easily separated from the reaction mixture
and was reusable without a significant loss of activity
and selectivity for the preparation of 1,1-diacetates.

General procedure for the protection of aldehydes: A mix-
ture of aldehyde (10 mmol), acetic anhydride (20 mmol)
and SiPW-8 catalyst (0.1 g) in a flask was stirred at room
temperature for 30 min and filtered, and then diethyl
ether (10 mL) was added to the filtrate. The resulting
solution was successively washed with 1 M NaOH and
water, solvent evaporated to get the crude product,
which was then dried over anhydrous Na2SO4. Further
purification was performed by column chromatography
on silica gel using petroleum ether/ethyl acetate as the
eluent to afford the pure product in good to excellent
yields. All products are known compounds, which were
satisfactorily characterized by spectral data.2,3,8,14,23

Recycling of the catalyst: A mixture of aldehyde
(10 mmol), acetic anhydride (20 mmol) and SiPW-8 cat-
alyst (0.1 g) in a flask was stirred at room temperature
for 30 min and filtered. The solid was successively
washed with water and dried for recycling. The next
run was performed by adding fresh benzyl aldehyde
(10 mmol), and acetic anhydride (20 mmol) and the
washed SiPW-8 catalyst into the flask under the same
experimental conditions.

In conclusion, a very simple and convenient catalytic
method was developed for the preparation of acylal
from a variety of aldehydes under solvent-free condi-
tions. The method has advantages of low environmen-
tal impact, high yields, high selectivity, short reaction
time, and the catalyst can be recycled. It is believed
that this protocol would be a useful synthetic
methodology.

Spectra data of selected compounds:

A: White solid, melting point: 44 �C, 1H NMR d 2.14 (s,
6H, 2COCH3), 7.38–7.55 (m, 5H, Ar–H), 7.71 (s, 1H,
Table 4. Catalytic conversion of benzyl aldehydes to acylals using
SiPW-8 as catalyst

Run 1 2 3 4
Yield (%) 95 96 95 94

Reactions condition: Reaction temperature 20 �C, reaction time
30 min, catalyst amount 0.1 g, yields are expressed from crystallized
products.
CH); IR (KBr, v/cm�1): 3063, 3032, 2930, 1760, 1512,
1446, 1253, 1225, 1011.

B: White solid, melting point: 81 �C, 1H NMR d 2.13 (s,
6H, 2COCH3), 2.40 (s, 3H, CH3), 7.28 (d, 2H,
J = 8.2 Hz, Ar–H), 7.65 (d, 2H, J = 7.9 Hz, Ar–H),
7.80 (s, 1H, CH); IR (KBr, v/cm�1): 2950, 1778, 1719,
1520, 1400, 1250, 1220, 1015, 956, 910.

D: White solid, melting point: 81 �C, 1H NMR, d 2.14
(s, 6H, 2COCH3), 7.30–7.41 (m, 2H, Ar–H), 7.45–7.50
(m, 2H, Ar–H), 7.60 (s, 1H, CH); IR (KBr, v/cm�1):
1772, 1590, 1348, 1235, 986.

F: White solid, melt point: 64 �C, 1H NMR, d 2.12 (s,
6H, 2COCH3), 7.60–7.70 (m, 1H), 7.71 (s, 1H, Ar–H),
7.75–7.84 (m, 1H, Ar–H), 8.22–8.23 (m, 1H, Ar–H),
8.35 (m, 1H, CH); IR (KBr, v/cm�1): 1774, 1540,
1439, 1351, 1012.

I: Colorless liquid; 1H NMR d 0.98 (t, 3H, J = 6.8 Hz,
CH3), 1.22–1.40 (m, 8H, 4CH2), 1.60–1.80 (m, 2H,
CH2O), 2.07 (s, 6H, 2COCH3), 6.77 (t, 1H, CH); IR
(KBr, v/cm�1): 3030, 2963, 1762, 1465, 1378, 1250,
1214, 1112, 1015, 968.
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